Clavier tuning optimization: Difference between revisions

From NURDspace
No edit summary
No edit summary
Line 81: Line 81:


A complete list of intervals per key is to be added.
A complete list of intervals per key is to be added.
<html xmlns="http://www.w3.org/1999/xhtml"><!--This file was converted to xhtml by LibreOffice - see https://cgit.freedesktop.org/libreoffice/core/tree/filter/source/xslt for the code.--><head profile="http://dublincore.org/documents/dcmi-terms/"><meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8"/><title xml:lang="en-US">- no title specified</title><meta name="DCTERMS.title" content="" xml:lang="en-US"/><meta name="DCTERMS.language" content="en-US" scheme="DCTERMS.RFC4646"/><meta name="DCTERMS.source" content="http://xml.openoffice.org/odf2xhtml"/><meta name="DCTERMS.issued" content="2019-12-30T16:21:48.754000000" scheme="DCTERMS.W3CDTF"/><meta name="DCTERMS.modified" content="2019-12-30T16:25:25.205000000" scheme="DCTERMS.W3CDTF"/><meta name="DCTERMS.provenance" content="" xml:lang="en-US"/><meta name="DCTERMS.subject" content="," xml:lang="en-US"/><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" hreflang="en"/><link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" hreflang="en"/><link rel="schema.DCTYPE" href="http://purl.org/dc/dcmitype/" hreflang="en"/><link rel="schema.DCAM" href="http://purl.org/dc/dcam/" hreflang="en"/><style type="text/css">
    @page {  }
    table { border-collapse:collapse; border-spacing:0; empty-cells:show }
    td, th { vertical-align:top; font-size:10pt;}
    h1, h2, h3, h4, h5, h6 { clear:both;}
    p { white-space: nowrap; }
    ol, ul { margin:0; padding:0;}
    li { list-style: none; margin:0; padding:0;}
    /* "li span.odfLiEnd" - IE 7 issue*/
    li span. { clear: both; line-height:0; width:0; height:0; margin:0; padding:0; }
    span.footnodeNumber { padding-right:1em; }
    span.annotation_style_by_filter { font-size:95%; font-family:Arial; background-color:#fff000;  margin:0; border:0; padding:0;  }
    span.heading_numbering { margin-right: 0.8rem; }* { margin:0;}
    .ta1 { writing-mode:lr-tb; }
    .Default { font-family:Liberation Sans; }
    .ce1 { font-family:Liberation Sans; font-weight:bold; }
    .co1 { width:72.2pt; }
    .co2 { width:184.11pt; }
    .ro1 { height:12.81pt; }
    /* ODF styles with no properties representable as CSS */
    { }
    </style></head><body dir="ltr"><table border="0" cellspacing="0" cellpadding="0" class="ta1"><colgroup><col width="111"/><col width="284"/></colgroup><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="ce1"><p>Interval name</p></td><td style="text-align:left;width:184.11pt; " class="ce1"><p>Harmonic ratio</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Minor second</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 24:23 (5x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 15:14 (7x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Major second</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 19:17 (10x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 8:7 (2x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Minor third</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 7:6 (3x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 6:5 (9x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Major third</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 5:4 (8x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 9:7 (4x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Fourth</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 13:10 (1x, C#-F#)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 4:3 (11x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Tritonus</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 7:5 (6x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 10:7 (6x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Fifth</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 3:2 (11x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 20:13 (1x, F#-C#)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Minor sixth</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 14:9 (4x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 8:5 (8x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Major sixth</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 5:3 (9x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 12:7 (3x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Minor seventh</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: 7:4 (2x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: 9:5 (10x)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Major seventh</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>short: ~13:7 ~15:8 (7x) (28:15 precise)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"> </td><td style="text-align:left;width:184.11pt; " class="Default"><p>long: ~21:11 (5x) (23:12 precise)</p></td></tr><tr class="ro1"><td style="text-align:left;width:72.2pt; " class="Default"><p>Octave</p></td><td style="text-align:left;width:184.11pt; " class="Default"><p>2:1 (12x)</p></td></tr></table></body></html>

Revision as of 16:30, 30 December 2019

Optimized temperaments for clavier instruments
NoPicture.png
Participants
Skills Music
Status Active
Niche Music
Purpose Use in other project
Tool No
Location
Cost
Tool category

Optimized temperaments for clavier instruments Property "Tool Image" (as page type) with input value "File:{{{Picture}}}" contains invalid characters or is incomplete and therefore can cause unexpected results during a query or annotation process. {{{Picture}}} {{#if:No | [[Tool Owner::{{{ProjectParticipants}}} | }} {{#if:No | [[Tool Cost::{{{Cost}}} | }}

Music is all about patterns. From rhythmic patterns to melodies built from harmonic intervals, mathematics are everywhere. This article illustrates a possible tuning scale which is, like all tuning scales, built around prime numbers.

The goal is to better tune any clavier to create better sounding intervals. Current standard tuning methods revolve around the 81/80 ratio, also known as the syntonic comma. The origin lies with Pythagorean scales, which contained only the 2nd and 3rd harmonics. Musicians found that slightly adjusting some intervals created a much more consonant sound with more usable intervals.

The minor adjusments of the syntonic comma resulted in a slightly stretched octave to accentuate the 3rd and 5th harmonics and to avoid the 7th and up. The 7th can be clearly heard in less mainstream music like jazz and blues and is often referred to as "the blue note". Wind instruments easily accomodate higher harmonics because without tuning they play notes from the harmonic series. Other instruments like claviers are not as accomodating, e.g. most piano's are not tuned to play the blue note.


(More bla to be added)

Bla about finding a better compromise between just harmonic ratios and equal temperament, after which I present to you:


Note Cents
C 0.000000
C#Db 118.927630
D 192.428948
D#Eb 311.356578
E 384.857896
F 503.785526
F#Gb 577.286843
G 696.214474
G#Ab 815.142104
A 888.643422
A#Bb 1007.571052
B 1081.072370
C 1200.000000

The distances between the notes are related by the golden ratio. Every x-step interval thus gets two possible lengths, in contrast to equal temperament, where all x-step intervals have the same length. In practice, this results in very consonant intervals, e.g. minor thirds now have either near perfect 6/5 or 7/6 ratios, rather than all having the same harsh sounding inbetween value.

A complete list of intervals per key is to be added.

- no title specified

Interval name

Harmonic ratio

Minor second

short: 24:23 (5x)

 

long: 15:14 (7x)

Major second

short: 19:17 (10x)

 

long: 8:7 (2x)

Minor third

short: 7:6 (3x)

 

long: 6:5 (9x)

Major third

short: 5:4 (8x)

 

long: 9:7 (4x)

Fourth

short: 13:10 (1x, C#-F#)

 

long: 4:3 (11x)

Tritonus

short: 7:5 (6x)

 

long: 10:7 (6x)

Fifth

short: 3:2 (11x)

 

long: 20:13 (1x, F#-C#)

Minor sixth

short: 14:9 (4x)

 

long: 8:5 (8x)

Major sixth

short: 5:3 (9x)

 

long: 12:7 (3x)

Minor seventh

short: 7:4 (2x)

 

long: 9:5 (10x)

Major seventh

short: ~13:7 ~15:8 (7x) (28:15 precise)

 

long: ~21:11 (5x) (23:12 precise)

Octave

2:1 (12x)